ラグランジェの方程式

図のように長さL1 とL2 の糸の先に,質量がそれぞれm1 とm2 の質点をつるした系(2重振子)を考える.

(a) 重力加速度をg として,この系のLagrangean を書き下し,Euler-Lagrange の運動方程式を求めよ.
(b) 振幅の小さい微小振動の場合についてこの系の基準振動数を求めよ.

基準振動数

n個の振動子からなる連成振動ではその運動方程式はn個の連立線形常微分方程式となり,その解は一般に個の単振動の合成として表される。その単振動を基準振動 ,またその振動数を基準振動数という。この例題の場合は振動子2個ゆえ,2個の基準振動の合成となる。

運動のシミュレーション

振幅が大きくなると、2つの小球は突如として摩訶不思議な行動をとるようになる。ひっくり返ったり回転したり・・・。 このように、解析的には数式が成り立つのに、ちょっとした初期条件の相違によって予想できないような全く異なる結果をもたらす現象を「カオス」という。


トップ   差分 バックアップ リロード   一覧 単語検索 最終更新   ヘルプ   最終更新のRSS
Last-modified: 2009-09-24 (木) 22:20:00 (3701d)