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4. Proof: cos(a+b) = (cos a)(cos b)-(sin a)(sin b)

5. Trig identities part 2 (parr 4 if you watch the proofs)

6. Trig identies part 3 (part 5 if you watch the proofs)

Solving Quadratic Equations
[ am very confused on how to do these problems.
Please help me.

NREEADIREEH : KBOEFEE

An nth degree equation can be written in modern notation as
X1+ a1 X1+ .+ anoX?+ anix+an=0

where the coefficients ay, ..., an-2, an-1, and an are all constants.
Girard said that an nt" degree equation admits of n solutions, if you
allow all roots and count roots with multiplicity. So, for example, the
equation x2 + 1 = 0 has the two solutions V-1 and —vV~1, and the
equation X2 — 2x + 1 = 0 has the two solutions 1 and 1. Girard wasn't
particularly clear what form his solutions were to have, just that there
be n of them: x1, X2, ..., Xn-1, and xn.

Girard gave the relation between the nroots x1, x2, ..., Xa, and x» and
the n coefficients ay, ..., ane, an-1, and an . First, the sum of the roots
X1+ X2 + ..., + Xn is —ai, the negation of the coefficient of x>1 . Next,
the sum of all products of pairs of solutions is a». Next, the sum of all
products of triples of solutions is —as. And so on until the product of
all n solutions is either a, (when nis even) or —an, (when nis odd).

Here's an example. The 4th degree equation
X*—6Xx3+3x2+26x—24=0

has the four solutions —2, 1, 3, and 4. The sum of the solutions
equals 6, thatis -2 + 1 + 3 + 4 = 6. The sum of all products of pairs
(six of them) is

(=2)(1) + (=2)(3) + (=2)(4) + (1)(3) + (1)(4) + (3)(4)
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which is 3. The sum of all products of triples (four of them) is

(=2)(1)(3) + (=2)(1)(4) + (=2)(3)(4) + (1)(3)(4)
which is 26. And the product of all four solutions is —24.

Descartes (1596—1650) also studied this relation between solutions
and coefficients, and showed more explicitly why the relationship
holds. Descartes called negative solutions "false" and treated other
solutions (that is, complex numbers) "imaginary".

Binomial Expansions and Pascal's Triangle

Can you supply the definition of what a binomial expansion is, where
it would be used, why, and how to do one? This would be a great
help

because | may be able to use it for forecasting.

Subject: Re: Binomial Expansions

A *binomial* is a polynomial expression with two terms, like x+y,
xA2+1 (x squared plus 1), or x"4-3*x.

*Binomial expansion* refers to a formula by which one can "expand
out"

expressions like (x+y)"5 and (3*x+2)"n, where the entire binomial is
raised to some power. Usually, binomial expansion is introduced
using

a construction called Pascal's Triangle, but | prefer to think of it

in terms of something called the *binomial coefficient*, which I'l
explain later.

First, we'll look at the "generic" binomial x+y, and its powers
(x+y)"2, (x+y)"3, ... (x+y)"n. Notice the following:

(x+y)M =x

(x+y)N2 = (x+y)(x+y) XN2+2*X*y+y N2

(X+y)A3 = (X+Y)(x+y)"2 = x"3+3*x"2*y+3* x*y2+y/3

(X+Y)M = (X+Y) (X+Y)\3 = xM+4*x"\3*y+6"x 2"y 2+4*x*y\3+y 4
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What is Pascal's Triangle?
How do you construct it?
What is it used for?

Pascal's Triangle is an arithmetical triangle you can use for some
neat things in mathematics. Here's how you construct it:

]

11

121



1331

14641
1510105 1
161520156 1
172135352171

You start out with the top two rows: 1, and 1 1. Then to construct
each entry in the next row, you look at the two entries above it (i.e.
the one above it and to the right, and the one above it and to the
left). At the beginning and the end of each row, when there's only
one number above, put a 1. You might even think of this rule (for
placing the 1's) as included in the first rule: for instance, to get the
first 1 in any line, you add up the number above and to the left
(since there is no number there, pretend it's zero) and the number
above and to the right (1), and get a sum of 1.

When people talk about an entry in Pascal's Triangle, they usually
give a row number and a place in that row, beginning with row zero
and place zero. For instance, the number 20 appears in row 6, place
3.

That's how you construct Pascal's Triangle. Here's an interactive
version where you can specify the number of rows you want to see
and from which you can bring up a large version that goes through
row 19.

Where do we use Pascal's Triangle?

Pascal's Triangle is more than just a big triangle of numbers. There
are two major areas where Pascal's Triangle is used, in Algebra and
in Probability / Combinatorics.

Algebra
Let's say you have the polynomial x+1, and you want to raise it to

some powers, like 1,2,3,4,5,.... If you make a chart of what you get
when you do these power-raisings, you'll get something like this:



(
(x+1)M =1 +x

(x+1)"2 =1 + 2x + x"2

(x+1)A3 =1 + 3x + 3x"2 + x"3

(x+1)M =1 + 4x + 6x"2 + 4x"3 + x4

(Xx+1)"5 =1 + 5x + 10x"2 + 10x"3 + 5xM + x5 .....

If you just look at the coefficients of the polynomials that you get,
you'll see Pascal's Triangle! Because of this connection, the entries
in Pascal's Triangle are called the binomial coefficients.

There's a pretty simple formula for figuring out the binomial
coefficients:

6*5*4*3*2*1

For example, [6:3] = -----=--=========nmmnum- = 20.

3*2*1*3*2*1

Probability/Combinatorics

The other main area where Pascal's Triangle shows up is in
Probability, where it can be used to find Combinations. Let's say you
have five hats on a rack, and you want to know how many different
ways you can pick two of them and wear them. It doesn't matter to
you which hat is on top, it just matters which two hats you pick. So
this problem amounts to the question "how many different ways can
you pick two objects from a set of five objects?"

The answer? It's the number in the second place in the fifth row, i.e.
10. (Remember that the first number in the row, 1, is always place
0.)
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172135352171

Because of this choosing property, the binomial coefficient [6:3] is
usually read "six choose three." If you want to find out the probability
of choosing one particular combination of two hats, then that
probability is 1/10.

In about 1654 Blaise Pascal started to investigate the chances of
getting different values for rolls of the dice, and his discussions with
Pierre de Fermat are usually considered to have laid the foundation
for the theory of probability.

Triangular Numbers, Fibonacci Numbers

The triangular numbers and the Fibonacci numbers can be found in
Pascal's triangle. The triangular numbers are easier to find: starting
with the third one on the left side go down to your right and you get
1,3, 6, 10, etc.
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The Fibonacci numbers are harder to locate. To find them you need
to go up at an angle: you're looking for 1, 1, 1+1, 142, 1+3+1,
1+4+3, 1+5+6+1.

Prove Sum nCi = 2An ...

| would like to know how to prove sum nCi = 2*n with 0 <=i <= n.
| tried the definition of nCi = n!/[i!*(n-i)!] but nothing.

Thanks,
Subject: Re: Pascal's triangle

Thanks for writing to us, Andy! This is a good one.



It comes from the use of the nCi in the binomial theorem:

[1+x]™ =1+nC1*x + nC2"x"2 + nC3*x"\3 + .... +
nC(n-1)*xA(n-1) + xn.

Since nCO =1, and nCn = 1 also, the coefficients in the formula
above

are just the terms in your sum. Now if you let x = 1, the left side
becomes 2”n and the right side is nCO + nC1 + nC2 + ... + nCn,
which is

what you want!

But that's of no use unless you already knew the binomial theorem.
So to
prove it from scratch, you first have to show that

nCk + nC(k-1) = (n+1)CKk,
which is easy using "nCi = n!/[i"*(n-i)!]" and a little algebra.

Then you prove the main result using the Principle of Mathematical
Induction. The method is like this:

Suppose you want to prove that some formula A(n) = B(n) for all
integers n.

You first show that it is true when n = 1. In other words, you show
the special case A(1) = B(1). [This is sometimes called the priming
step.]

Now you argue as follows. Suppose it is always true that whenever
A(k) = B(k). Then it follows that A(k+1) = B(k+1). This is a lot
easier to show than to show that A(n) = B(n). Okay, suppose you
can

show this. Then starting from A(1) = B(1), you can conclude that
A(2) = B(2). But now that leads to A(3) = B(3), and so on.

You prove the inductive step "whenever A(k) = B(k) then it follows



that A(k+1) = B(k+1)," and then the theorem is proved generally.
In this case, we first show
sum nCi = 2"n

when n = 1, in other words, 1C0 + 1C1 = 2, which is certainly true,
because 1C0 =1, 1C1 =1, and 2M = 2. [So the priming step is
complete.]

[Now we have to show that IF WE ASSUME THAT sum kCi = 27K,
then
sum (k+1)Ci = 2Mk+1).]

So assume that sum kCi = 2/k.
Now sum (k+1)Ci = (k+1)CO + (k+1)C1 + ... + (k+1)Ck + (k+1)C(k+1)

and you should be able to finish the algebra yourself and show that
the right side boils down to 27(n+1), as it is supposed to.

Now you argue that, since this is true regardless of the value of the
integer k, by the Principle of Mathematical Induction, the formula
sum

nCi = 2”n is true for all n.

This is quite an easy proof, but the idea of the principle of
mathematical induction is a little difficult to understand for some
people. | think | was about 17 when | first understood it, so you
might be able to figure it out now. If you don't, in a couple of
years you definitely will!

—iX 21EER | nHRBMuDBE
Za—hri LZRAND=ZAEHIS I O—RIEEEZHER
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f(x)=nCx p™gAn - x), x=01,...,n, p+qg=1

NCx=n[x! - (n-x)]
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[p + (I-p)]* n = nCO p*0(1-p)*n + nC1 p*(1-p)*(n-1)+ ... + nCn p”~n(1-
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The nth Fibonacci number is the sum of the previous two Fibonacci
numbers.

#ERE F(0)=0,F(1)=1
F(n)=F(n = 1) + F(n = 2)

The first 21 Fibonacci numbers , also denoted as Fn, forn=0, 1, 2, ...,
20 are:

0112358132134 5589 144 233 377 610 987 1597 2584
4181 6765
TJA4MFYFEI TRy FORDRERE

In the West, the sequence was studied by Leonardo of Pisa, known as
Fibonacci, in his Liber Abaci (1202). He considers the growth of an
idealised (biologically unrealistic) rabbit population, assuming that:

In the "zeroth" month, there is one pair of rabbits (additional pairs of
rabbits = 0). In the first month, the first pair begets another pair (additional
pairs of rabbits = 1). In the second month, both pairs of rabbits have
another pair, and the first pair dies (additional pairs of rabbits = 1). In the
third month, the second pair and the new two pairs have a total of three
new pairs, and the older second pair dies (additional pairs of rabbits = 2).
The laws of this are that each pair of rabbits has 2 pairs in its lifetime, and
dies.

Let the population at month n be F(n). At this time, only rabbits who were
alive at month n — 2 are fertile and produce offspring, so F(n — 2) pairs are
added to the current population of F(n — 1). Thus the total is F(n) = F(n — 1)
+ F(n —2).

EEHE DR

TAMRFYFEDNZREL LTV &, H<K2IEDHE  Fnt+l/Fn
IF. BEREUCBD R <EDL,
Limit n--> Fn+l/Fn = ¢ = (1+V5)/2 =1.61803

* Johannes Kepler observed that the ratio of consecutive Fibonacci
numbers converges. He wrote that "as 5 is to 8 so is 8 to 13, practically,
and as 8 isto 13, so 1s 13 to 21 almost”, and concluded that the limit
approaches the golden ratio.

FnldEEHoTRDEINS
Fn=[¢"n -(1-9)'n JNSEMERDBI : 7« RF v FEF

Example: Fibonacci numbers
Fn+2 = Fn+1 + fn with initial values FO=0,F1=0.
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We obtain the sequence of Fibonacci numbers which begins:
0,1,1,2,3,5,8,13,21, 34, 55, 89, ...

— % DB The Fibonacci recursion

Fn+2 - Fn+1 - Fn =0

1s similar to the defining equation of the golden ratio in the form
x"2-X-1=0

which is also known as the generating polynomial of the recursion. By
definition a,f is a root of the equation

a=(1+V5)72, B=(1-V5).2.

Any root of the equation above satisfies x*2 - X -1 = 0 and multiplying by
x*n shows:

xMn+2)-xn+1)-x*n=0

Both a”n and f*n are geometric series (for n = 1, 2, 3, ...) that satisfy the
Fibonacci recursion. Linear combinations of series a’n and B”*n, with
coefficients a and b, can be defined by

Fc(n)=a * a®n+b * B*n for any real a and b.

All thus-defined series satisfy the Fibonacci recursion
Fc(nt+2)=a * a™(nt+2) + b - fA(nt+2)

=a * (a"(nt1)+a™n) +b * (B (nt1)+p"n)
=a * a(nt1)+b * p(nt+l)+a - a*ntb * B n

=Fc(n+1) + Fc(n).
Requiring that Fc(0)=0,Fc(1)=1 yields
Fc(0)=a - a"0+Db - pr0=a+b=0

Fc(l)=a- oM +b-pB*l=a-a+b-p=0

Then a=1/V5 and b=-1/75. The solution of the Fibonacci recursion is
Fn=(oa’n - prn)N5 = {(1+V5)2} ~n +  {(1+V5)/2} *n

a=(1+V5)2, B=(1-V5)/2.

2D ENS FUHAEXDEOBRIAMEE T, —ENKDOEND
CENEETEDS
a "(homogeneous) linear recurrence relation" is one like:

2*x_(n+3) + 5" x_(n+2) - x_(n+1) + 3"x_n =0,

where you multiply each x_(n+i) value by some constant, any real



number, and you sum them all up and get zero. (Or you might have
some

on the left side of the equation and some on the right, but that's the
same thing.) Your second case is a linear recurrence relation, and
they are rather simple: Change x_(n+i) into rAi and you will get a
polynomial, like

2*'r3 + 5 r"2-r+ 3 =0,

find its roots (such as r1, r2, and r3), and x_n has the form
al*r1™n +a2*r2"n + a3 * r3™n

where the constants a1, a2, a3 (up to the degree of the polynomial)
are determined by the initial values (seeds, you called them) of the

sequence. There is more math that can be said about this, but it
gives you the idea.

Golden ratio
From Wikipedia, the free encyclopedia
a b
< < 4
- _/
~
a+b

a+bistoaasais tob

The golden section is a line segment divided according to the

golden ratio: The total length a + b is to the longer segment a as a is
to the shorter segment b.

In mathematics and the arts, two quantities are in the golden ratio if
the ratio of the sum of the quantities to the larger quantity is equal to

(=) the ratio of the larger quantity to the smaller one.
The golden ratio is an irrational mathematical constant,
approximately 1.6180339887. The figure on the right illustrates the

geometric relationship that defines this constant. Expressed
algebraically:



a+b a
a b "

This equation has as its unique positive solution the algebraic
irrational number

1 )
o= +2‘f — 1.6180339887. ..
Two quantities a and b are said to be in the golden ratio ¢ if:
at+b a
a b 7.

One method for finding the value of ¢ is to start with the left fraction.
Through simplifying the fraction and substituting in b/a = 1/¢,
a-+b b 1

l+—-=1+—
a a @,

it is shown that,

1
¥

Multiplying by ¢ gives
¢+ 1=¢2
which can be rearranged to
P2-¢p-1=0.
Using the quadratic formula gives the only positive solution as,

1+ 5
o= +2\[=1.618033988?...

Kepler triangle


http://tokyox.matrix.jp/wiki/Quadratic_formula

A Kepler triangle is a right triangle with edge lengths in geometric
progression. The ratio of the edges of a Kepler triangle are linked to
the golden ratio

p=(1+V5)/2

and can be written: 1:\g:¢ , or approximately 1 : 1.2720196 :
1.6189339.

2

N4

1

R

Triangles with such ratios are named after the German
mathematician and astronomer Johannes Kepler (1571-1630), who
first demonstrated that this triangle is characterised by a ratio
between short side and hypotenuse equal to the golden ratio. Kepler
triangles combine two key mathematical concepts—the Pythagorean
theorem and the golden ratio—that fascinated Kepler deeply, as he
expressed in this quotation:

E H Derivation

gllll

The fact that a triangle with edges 1, Yo and , ¢ forms a right triangle
follows directly from rewriting the defining quadratic polynomial for the
golden ratio :

2=+ 1

into Pythagorean form:

(©/2= (Vo2 + (1)"2

BA =AM (right triangle)lC & WLT, hypotenuseld "®}Z) , adjacent
i& TIED, |, oppositeld "™y o ZILFXTZXDEE "The length of
the hypotenuse of the right triangle is equal to the square-root of the sum of
the squares of the other two sides (the adjacent sides). Assuming that the

lengths of the other two sides are 8 [cm] and 5 [cm], the length of the
hypotenuse is about 9.43398 [cm]."

R E

A Kepler triangle can be constructed with only straightedge and compass



by first creating a golden rectangle:

Construct a simple square

Draw a line from the midpoint of one side of the square to an opposite
corner

Use that line as the radius to draw an arc that defines the height of the
rectangle

Complete the golden rectangle

Use the longer side of the golden rectangle to draw an arc that
intersects the opposite side of the rectangle and defines the
hypotenuse of the Kepler triangle

al
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A pentagram colored to distinguish its line segments of different lengths.
The four lengths are in golden ratio to one another.
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f(n)=¢n/V5 o= (1+V5)/ 2 FEHEHT. WHSETAD
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A Fibonacci spiral which approximates the golden spiral, using
Fibonacci sequence square sizes up to 34.

EYISEEATE (B) 2FE->-TWBdLS5 T, EQOLOEEANFHE
I VESKICHITDEOBEYNG T 5 &, FD[OER
AIF137507EDESAEICKLD

Polynomial

ZIER (25 UZE. polynomial) SEHE L VCEROF EEDH
Mo h, RBZOEELGWRELGIHENHZTH D, BEEMIC
HIRRARBEOBRILICKERKE ZRIcUfc, ZIEA L

3x3 = Tx?+2x-23

DELOBHZ2 LIt TH D, IEPREZETIMNEE LTROAD
KDICEZIIEA.

3x3 + (=7x% )+ 2x + (-23)
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From Wikipedia, the free encyclopedia

In mathematics, a polynomial is an expression of finite length constructed
from variables (also known as indeterminates) and constants, using only
the operations of addition, subtraction, multiplication, and non-negative
integer exponents. For example, x> — 4x + 7 is a polynomial, but x> — 4/x +
7x32 is not, because its second term involves division by the variable x (4/
x) and because its third term contains an exponent that is not an integer
(3/2).

Polynomial functions

A polynomial function is a function that can be defined by evaluating a
polynomial. A function f of one argument is called a polynomial function if
it satisfies

flx) = apa” + an_12" ' 4 - + a2’ + a1 + ag

for all arguments x, where # is a non-negative integer and ao, ai,a2, ..., a»
are constant coefficients.

For example, the function f, taking real numbers to real numbers, defined
by

flz) =2z

is a polynomial function of one argument.

Polynomial equations

A polynomial equation, also called algebraic equation, is an equation in
which a polynomial is set equal to another polynomial.
322 +4x—-5=10

is a polynomial equation.

B i OE¥®

BEL: —a—b> (1642~1727 F) . THILb, A1 Z7—BFKIC
iE -1 [EPREDORBBIEBESINTWzDTH S (Cajori 1970,

p.357) o

HIVA/ L2 RABRDIEE Tx +y =10, x-y =40 Zi&l9Ix. y &
KHK) T EEZELTVWEXYT, TZnlCL->-TRIT2BHE
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Complex Number and Euler's formula
In complex analysis the complex numbers are customarily
represented by the symbol z, which can be separated into its real (x)
and imaginary (y) parts, like this:

z2=x+y
where x and y are real numbers, and i/ is the imaginary unit. In this
customary notation the complex number z corresponds to the point

(x, ¥) in the Cartesian plane.
In the Cartesian plane the point (x, y) can also be represented in

lar rdin as
. Yy
z.y) = (rcosf,rsinf (7‘ = /2?2 +y?; # = arctan —) )
(z,y) = ( . ) Va2 +y% "

In the Cartesian plane it may be assumed that the arctangent takes
values from —z to z (in radians), and some care must be taken to
define the real arctangent function for points (x, y) when x <0. In the
complex plane these polar coordinates take the form

z =+ iy = |2| (cosf + isin@) = |z|e"

where
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P
|z| = 2?2 +y% 0 =arg(z)=—ilog —

|2l
Here |z| is the absolute value or modulus of the complex number z; 0, the
argument of z, is usually taken on the interval 0 < 8 < 27x; and the last
equality (to |z|e”) is taken from Euler's formula. Notice that the argument
of z is multi-valued, because the complex exponential function is periodic,
with period 27zi. Thus, if 8 is one value of arg(z), the other values are given
by arg(z) = 0 + 2nzx, where n is any integer # 0

Euler's identity

Jacob Bernoulli contributed to the history of e in 1683 when he was
looking for a way to compound interest. He tried finding the limit of
(1+(1/n)), where n is usually infinity. This was the first approximation of
e. Shortly after this the number e finally appeared. A letter written to
Huygens had the notation b, which is now known as e (O’Connor). &=x#]

De (. FHAFENSKDHSNT,

A famous mathematician named Leonhard Euler was one of the main
contributors in history to the field of mathematics. Euler first used the
symbol for pi as the ration of the circumference to the diameter in a circle
and was also the first to use i to be equal to square root of -1. He was also
the first to find that e”"(pi1*1)+1=0. Euler was born in Basel and was taught
by another famous mathematician, Bernoulli.

Euler was especially important to the function e. Euler was the first
person to use the notation e, which he used in a letter he wrote to a man
named Goldbach. A book, “Introductio in Analysin Infinitorum”, was
written by Euler in 1748 that describes his views and findings about e. In

Euler’s work was the formula for e, which is

“e=1+1/11+ 1/ +1/3+..7” Euler was able to use his own formula to
find e to 18 decimal places. His approximation for e was
2.718281828459045 (Singer).

The exponential function eZ can be defined as the limit of (1 + Z/N)N,
as N approaches infinity, and thus e™ is the limit of (1 + iz/N)N. In this
animation N takes various increasing values from 1 to 100. The
computation of (1 + iz/N)N is displayed as the combined effect of N
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repeated multiplications in the complex plane, with the final point
being the actual value of (1 + iz/N)N. It can be seen that as N gets
larger (1 + iz/N)N approaches a limit of —1.
In mathematical analysis, Euler's identity, named after Leonhard
Euler, is the equation

T+1=0,

where

eis Euler's number, the base of the natural logarithm,

7is the imaginary unit, one of the two complex numbers whose
square is negative one (the other is —1), and

mis pi, the ratio of the circumference of a circle to its diameter.

Euler's identity is considered by many to be remarkable for its
mathematical beauty. Three basic arithmetic operations occur
exactly once each: addition, multiplication, and exponentiation. The
identity also links five fundamental mathematical constants:
* The number 0.
* The number 1.
* The number &, which is ubiquitous in trigonometry, geometry
of Euclidean space, and mathematical analysis (it = 3.14159).
* The number e, the base of natural logarithms, which also
occurs widely in mathematical analysis (e = 2.71828).
* The number j, imaginary unit of the complex numbers, which
contain the roots of all nonconstant polynomials and lead to
deeper insight into many operators, such as integration.

Furthermore, in mathematical analysis, equations are commonly
written with zero on one side.

Euler's identity is a special case of the more general identity that the

nth roots of unity, for n> 1, add up to O:
n—1

Z e?mk/n = 0.
k=0

Euler's identity is the case where n= 2.

—&HZHLWE BN SEEH
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Dividing by Complex Numbers

Date: 05/04/2003 at 23:07:51
From: Ryan
Subject: Rational expressions with imaginary numbers

Hi,
I'm difficulty with problems that have an imaginary number but don't

cancel. Example: Divide each pair of complex numbers: (8+41)/(1+21)

Any help would be great.
Thanks.

Date: 05/05/2003 at 05:02:42
From: Doctor Luis
Subject: Re: Rational expressions with imaginary numbers

Hi Ryan,

Good question. There's a trick for dividing by complex numbers, and to
use it you need to understand something called the conjugate complex
number.

Essentially, the conjugate of a complex number is the number you get
when you replace (i) by (-1). For example, the conjugate of 1+3i is
1+3(-1)=1-31, and also, the conjugate of -3-21 is -3-2(-1)=-3+21

Now, something funny happens when you multiply a complex number by
its



conjugate. The answer turns out to be a real number. I'll illustrate
with 1+31 and its conjugate 1-31

(1431)%(1-31) = 1°2 - 3i)"2=1-(9 * (-1)) = 1 + 9 =10

Here, [ used the algebraic formula (a-b)(a+b) = a2 - b2 to multiply
them. (Don't forget that 1*2 = -1)

You should verify for yourself that for any complex number z=x+iy and
its complex conjugate z'=x-1y, the product z*Z' is a real number (and
that it equals x"2+y”2).

Knowing this fact about complex numbers, to divide you simply multiply
and divide by the conjugate of the denominator.

Here's how:
20 + 30i 20 + 30i -1-2i
e Koo (conjugate trick)
-1+ 2i -1+2i -1-2i
(20 + 301)(-1 - 2i)

------------------- (multiplying bottom)

( D2+ (2)™2
= (40 - 701)/5 (after multiplying top)

= 8 - 141 (final answer)

That's all there is to it. You make the denominator into a number you
can divide by (that is, a real number), using complex conjugates. With
this background, you should be able to solve the division you asked
about.

Let us know if you have any more questions.
DeMoivre's Formula

From: Greg Lukens

Subject: Demove's Formula

I have forgotten about DeMoivre's formula. Thanks in advance for
the reminder.
Greg Lukens



From: Doctor Benway
Subject: Re: Demove's formula

Hi Greg,

I believe the formula you're looking for is DeMoivre's formula, which
is the following:

(cos(theta) + i*sin(theta))n = cos(n*theta) + i*sin(n*theta)

This formula is useful when you have a complex number and want to raise
it to some power without doing a lot of work.

If all you want is the formula, you can ignore the rest of this
message. However, if you want a little more insight into what is going
on, read on.

Recall that any complex number can be written in the form
r*e”(i*theta). If you plot a complex number in the complex plane
(where the x-axis is the real axis and y-axis is the imaginary axis),
then "r" will be the distance from the point to the origin and theta
will be the angle a line from the origin to the point makes with the
x-axis. A little trig shows that a complex number written as
r*e”(i*theta) can also be written as r*cos(theta)+r*i*sin(theta).

Knowing this little fact gives us the ability to switch back and forth
between ways of writing complex numbers, depending on what we want to
do with them. If we want to add complex numbers, then the form a + b*i
1s easiest, whereas if we want to multiply them together, it is easier

to use the form r*e”(i*theta).

Essentially what you are doing is taking a complex number of the form
(a + b*1), converting it to the form r*e”(i*theta), raising it to a
power in that form, then converting back to the first form. Observe:

(r*cos(theta) + r*i*sin(theta))"n

= (r*(cos(theta) + 1*sin(theta))"n

= (r"n) * (cos(theta) + 1*sin(theta))"n

= (r"n) * (e"(i*theta))"n

= (r"n) * (e"(n*1*theta))

= (r"n) * (cos(n*theta) + 1*sin(n*theta))



Of course knowing DeMoivre's formula allows us to go straight from
(r*(cos(theta) + i*sin(theta))”n

to

(r*n) * (cos(n*theta) + 1*sin(n*theta)).

Thanks for writing, hope this helps.

e MR & (d, 2QIEEENS., XA ET7He %KOHD, EiE
FETE & erx
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Derivative of eAx

From: Reb

Subject: Proof of the derivative of e”x

Hi Doctor Math,

| was wondering if you could tell me how to prove that the derivative
of eMx is e™x. | need a step by step proof.

Thanks a lot.

Subject: Re: Proof of the derivative of e”x

In the 1730's Euler investigated the result of compounding interest
continuously when a sum of money, say, is invested at compound
interest.

If interest is added once a year we have the usual formula for the
amount, A, with principal P, rate of interest r% per annum, and t the
time in years:

A=P(1 +r/100)M

If interest were added twice a year, we would replace r by r/2 and t
by 2t. The formula would become:

A =P(1 + r/(2x100))(2t)

If interest were added three times a year, then at the end of t years
A would be:

A =P(1 + r/(3x100))7(3t)
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and if we added interest N times a year, then after t years the
amount

A would be

A =P[1 + r/(Nx100)]*(Nt)

Now to simplify the working we let r/(100N) = 1/n, so N = nr/100 and
A =P[1 + 1/n]N(nrt/100)

= P[(1 + 1/n)"n](rt/100)

We now let n -> infinity and we must see what happens to the
expression (1 + 1/n)”n as n tends to infinity.

Expanding by the binomial theorem

(1+1/nM*=1+n(1/n) +n(n-1)/2! (1/n)"2 +

n(n-1)(n-2)/3! (1/n)A3 + ...

Now take the n's in 1/n?2, 1/n/A3, ... in the denominators and
distribute one n to each of the terms n, n-1, n-2, ... in the
numerator, getting

1x (1-1/n) * (1-2/n) * ...

SO we now have

A+1/n)™M=1+1+1(1-1/n)2' + 1(1-1/n)(1-2/n)/3! + ...

Now let n -> infinity and the terms 1/n, 2/n, ... all go to zero,
giving

A+1/nN)=1+1+1/21+1/31+1/4! + ...

and this series converges to the value we now know as e.

If you consider e”x you get

(1 + 1/n)A(nx)

Expand this by the binomial theorem and you have

(1 + 1/n)Mnx) =1 + (nx)(1/n) + nx(nx-1)/2! (1/N)A2 + ...

and carrying through the same process of putting the n's in the
denominator into each term in the numerator, as described above,
you

obtain

e =1+ x+ x"2/2! + x"3/3! + ...

and differentiating this we get

d(e”™x)/dx =0 + 1 + 2x/2! + 3x"2/3! + ...

=1+ X+ x72/2! + x3/3! + ...

= e’x

Reverting to our original problem of compounding interest
continuously, the formula for the amount becomes

A = P.e/(rt/100)



You might like to compare the difference between this and
compounding

annually.

If P =5000, r=8,t=12 years

Annual compounding gives

A =5000(1.08)M2 = 12590.85

Continuous compounding gives

A =5000.e796/100) = 13058.48

The difference is not as great as might be expected

Proof of e (ix) = cos(x) + isin(x)
From: Walter Graf
Subject: Proof of e*(ix) = cos(x) + isin(x)

In the equation e”(iP1) - 1 = 0, the proof'is to evaluate
e™(ix) = cos(x) + 1sin(x) for x = P1i.
I would like to see a rigorous proof of of the the above equation.

Thank you,
From: Doctor Mitteldorf
Subject: Re: Proof of e*(ix) = cos(x) + isin(x)

Dear Walter,

This is called the Euler equation, and it's not something you can
prove rigorously. It's a definition, and I'd like to convince you
that it's the only sensible definition, of how to compute imaginary
exponentials.

I can think of three approaches to verifying the Euler equation,
but unfortunately one of them is all calculus, one uses calculus
explicitly, and only the third is free of calculus. I'm just guessing
from your age that you may not have studied calculus yet.

You can verify that the Euler equation makes a sensible definition
by expanding the two sides as Taylor series in X. You can also
differentiate both sides and see that the answer is self-consistent.
Thirdly, you can use the formula for cos(2x) and sin(2x) to show that
the right side has the property you expect from an exponential, so
that e*1(2x) = (eMix)"2.



So start with choice 3. You have the formulas

cos(2x) = cos”2(x) - sin”2(x) and
sin(2x) = 2 sin(x) cos(x)

You'd also want to demand that e"1(2x) = (e”ix)"2. That means that
your new definition of e”ix is behaving like an exponential. See if
you can put these together to show that

e™M(2x) = cos (2x) + 1 sin(2x).

The Taylor expansion is something you can appreciate without calculus,
although its roots are in calculus. It's a series expression for a

function. You may have run across the following infinite series
representations of cos and sin and e”x. In fact, this is the most
straightforward way to compute the value of sin(x) or e”x for any

given X.

cos(x) =1 - x"2/2! + x*4/4! - x"6/6! + ...
sin(x) = x - x3/3! + x"5/5! - x*7/7! + ...
e’x =1+ x+x"2/2! +x73/3! + x"4/4! + ...

The ! in these equations means factorial. In other words,
4 = 4*3*2%],

See if you can use these infinite series expressions to verify the
Euler equation.

After you complete these two projects, I'm hoping you'll find the
Euler equation very plausible. If you still want more proof, write
back again...



Euler Equation and DeMoivre's Theorem

From: Anthony
Subject: e, pi, and 1

Is there a proof of e"(i*Pi) +1 = 0?

From: Doctor Anthony
Subject: Re: e, pi, and i

The derivation is not too difficult if you are familiar with the
basics of complex numbers and exponential functions.

Start with z = cos(x) + 1*sin(x) ......(1)

Then dz/dx = -sin(x) + 1*cos(x)
= i(cos(x) + 1*sin(x)) (since "2 = -1)
= i*Z

So dz/z = 1*dx
Now integrate both sides

In(z) = i*x + ¢ From (1); when x=0, z=1 so ¢=0
In(z) = 1*x

z = e(1*x) but z = cos(x) + 1*sin(x), So

cos(x) + 1*sin(x) = eN(i*X) ...... (2)

Put x = pi in (2) and we get:

-1+ 0 = e~(i*pi)

and so e™(i*pi) +1=0

This is the Euler equation.

Now returning to (2) we have
[cos(x)+i*sin(x)]"*n = [e(1*X)]"n

= e"N(i*nx)

= cos(nx) + 1*sin(nx)

and this is the statement of DeMoivre's theorem.
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Ice Cream Cone Problem

Date: 02/27/2000 at 19:57:39From: Tripp RatcliffSubject: Maximum
volumel'm not sure if you've heard of the ice cream cone problem, but it
goes like this: You are to place a sphere of ice cream into a cone of height
1. What radius of the sphere will give the most volume of ice cream inside
the cone (as opposed to above the cone) for a cone with a base angle of 30
degrees? I can not figure out how to solve it. Any suggestions?

Dear Tripp,

Here is one possible solution to this problem. Some of the details
have been deliberately left out so you will have to go through this
pretty carefully to be sure I haven't made any mistakes and to also be
sure you understand this solution. You may write back if you still
have any questions.

RESTATEMENT OF THE CONE PROBLEM: Find the size of a perfect
sphere of

ice cream that will result in the most volume of ice cream within a

perfect cone. For this particular case, let the cone height be H and

the cone base angle be 30 degrees.

First, one may assume that the sphere that satisfies these conditions
must lie only partially inside and partially outside of the cone. In
the extreme, a very tiny sphere near the bottom of the cone will
certainly occupy less volume then a slightly larger sphere. So the
sphere volume within the cone will increase with the sphere's radius
until, at some point, the radius becomes so large that most of the
sphere volume will lie outside of the cone. However, as long as the
center of the sphere lies at, below, or only slightly above an
imaginary plane covering the top of the cone, there is a simple
relation between the sphere's radius (R), the cone height (H), and the
perpendicular distance between the sphere's center and the plane
covering the top of the cone (A). In referring to the following
figure:
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it may be seen that this relation is:

R = (H - A)[sin(Theta)],

where: A is positive if measured between the imaginary plane and the
inside of the cone, and negative if measured from the imaginary plane
and outside of the cone, and Theta equals (30/2 = 15 degrees). This
expression for R is only valid for values of A between +H and ca.
-0.0718H. Do you see why?

Since, under these conditions, it is possible to find an expression

for the volume of the sphere that lies inside the cone (as a function

of the sphere's radius and the perpendicular distance between the
sphere's center and the plane surface covering the top of the cone),

it is also possible to set the first derivative of this expression

equal to zero to see if a maximum can be found. Note: H and Theta are
both constants.

One next needs to find the sphere volume within the cone, as a
function of R and A. One way to obtain this expression is to find the
sphere volume outside of the cone, then subtract that result from the
total sphere volume. If one allows the sphere volume lying outside of
the cone to be represented by Vout, it can be shown that:



Vout = Pi[(2/3)R”"3 - AR"2 + A*3/3].

This expression is a result of integrating the expression:
dVout = Pi[y"2]dx = Pi[R"2 - x"2]dx,

between the x limits of A and R.

Subtracting Vout from the total sphere volume of (4/3)Pi R"3, to
produce an expression for the sphere volume within the cone (Vin),
produces the following:

Vin = Pi[(2/3)R"3 + AR"2 - A"3/3].

Taking the derivative of Vin, with respect to A, produces:
(dVin/dA) = Pi[2R"2(dR/dA) + R"2 + 2AR(dR/dA) - A"2].
Rearranging slightly produces:

(dVin/dA) = Pi[2R(R + A)(dR/dA) + (R + A)R - A)]
= Pi(R + A)[2R(dR/dA) + (R - A)].

Setting the last expression above for (dVin/dA) equal to zero and
solving for A produces:

Pi(R + A)[2R(dR/dA) + (R - A)] = 0.

But, Pi(R + A) cannot equal zero (as long as A is not is too
negative), so:

[2R(dR/dA) + (R - A)] = 0.

If solving the expression above for A produces a reasonable value for
A (i.e., a value for A between +H and ca. -0.718H, then a maximum
sphere volume within the cone (for that value of A) will have been
found.

Note that (dR/dA) = [-Sin(Theta)], from the first equation written
above. Using that first expression for R and (dR/dA) = [-Sin(Theta)]
in the equation above should produce the following result for A:



A =[H Sin(Theta)][1.0 - 2 Sin(Theta)]/[1.0 + Sin(Theta) -
2 Sin”2(Theta)].

For H= 1.0 and Theta = 15 degrees, A is approximately = +0.111, or
about 11% of H.

Minimizing the Surface Area of a Can

From: Chris Donges

Subject: Surface area

What coke can dimensions would use the least amount of aluminum
possible while still holding 375 ml? I'm not sure where to start -
please help.

From: Doctor Jerry

Subject: Re: Surface area

Hi Chris,

I'll have to make some assumptions. If the coke can can be thought of
as a cylinder with two circular ends, then you can write two formulas:
V = pi*r*2*h

and

S = 2*pi*r*2 + 2*pi*r*h.

The second is the areas of the two ends plus the area of the cylinder.
If r and h are in cm, you can convert 375 ml into cubic centimeters
and then you'll have an equation like:

375%k = 2*pi*r"2 + 2*pi*r*h.

You can solve this for h in terms of r. Substitute this into the

formula V = pi*r*2*h, which now will be entirely in terms of r. Now,
just maximize V. You can do this with calculus or graphing.

Cylinder Problem

From: John Van Straalen

Subject: Geometry cylinder problem

The following question was brought up in my math class concerning the
volume and surface are of a can.

Given an aluminum soft drink can with radius 3.25 c¢m, height 12 cm,
volume 398.2 cubic cm, and surface area 311.4 square cm, is it
possible to construct a can with a larger volume but with the

same surface area? Can you construct a can with a smaller surface
area but the same volume?

Is there a way to find the dimensions of the can with the largest
volume but with the same surface area? Can you find the dimensions of
the can with the smallest surface area but the same volume?



Any help, hints, or formulas that would help me answer these questions
would be appreciated.

From: Doctor Jerry

Hi John,

These questions often come up in calculus. They can be solved by
graphing, although you may have to be content with an approximate
answer.

Suppose the volume of the can is fixed and we want to choose the
dimensions so that the surface area is a minimum.

So, V = pi*r*2*h, where V is fixed. Note that this forces r and h to
vary so that the product r*2*h is always equal to V/pi.

Surface area S = 2pi*r*h+2pi*r"2 = lateral surface plus the two ends.
Now, from the fact that r*2*h = V/pi1, we can solve for h = V/(pi1*1"2).
So,

S = 2pi*r*V/(p1*r*2)+2pi*1"2

Now you can graph S as a function of r and choose the low point.
Looking at the graph, is there a high point, that is, is there a
maximum surface area for a given volume?
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Pictured on the right is an accurate approximation of sin(x) around the
point x = 0. The pink curve is a polynomial of degree seven:
3 5 7
. 7 T T T
sm(x) ~x — 3 + Rl
The error in this approximation is no more than [x|°/9!. In particular, for —1
<x <1, the error is less than 0.000003.
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Several important Maclaurin series expansions follow. All these expansions
are valid for complex arguments x.
Exponential function:

QO n 2 3
T T T
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Trigonometric functions
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sinx ‘ =r— —+4+——--- forallx
Z (2n +1)r 31 T Bl
Z U for all
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272)’ 21 4l

Blnomlal series (includes the square root for o = 1/2 and the infinite
geometric series for a =—1):
Y

(14+2)* = Z ((Z)I’“ for all |z| < 1 and all complex «

n=>0

Computers and Trigonometric Functions:Taylor series

Subject: Sine, Cosine, Tangent

Hi Dr. Math,

I was wondering, what actual functions find the values for sine,
cosine, and tangent? Let's say that:

sin 48 = 0.74314482547739

cos 48 = 0.66913060635886

tan 48 = 1.1106125148292

How does a calculator or computer come up with these numbers? What
does the computer actually do to the number 48 (in this case) that
produces these answers? Thanks for all your help. :)

-Brian

Subject: Re: Sine, Cosine, Tangent

Hi,

Nowadays, with computer memory so readily available, the values of
sine, cosine, and tangent are often stored in a table in memory.
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(This memory is often located inside the same chip that carries the
Central Processing Unit.) This makes it possible to produce answers
very quickly.

When the computer or calculator is asked to produce a value of sine,
cosine, or tangent which is not in the table, the computer exploits

the fact that small changes in the angle only create small changes in
the value of the function to extrapolate an answer. Because computers
and calculators are only expected to give approximate answers anyway
(e.g. to 10 decimal places, or what have you), this extrapolation need
be done only to the necessary accuracy.

However, before there were tables, the functions had to be computed
using some other method.

Consider the function sin(x). Thanks in large part to Newton, and also
his student Taylor, it was discovered that when x is measured in
radians:

sin(x) = x - x"3/3! + x*5/5! - x*7/7! + ...

The equations for cosine and sine are similarly derived using Taylor
series. Also, you can get cos(x) by taking the square root

of 1 - sin”2(x). You can get tan(x) by dividing sin(x) by cos(x):

cos(x) =1 - x"2/2! + x™4/4! - x"6/6! + ...

tan(x) = x + 2x73/3! + 16x"5/5! + 272x~7/7! + 7936x"9/9! + ...

The explanation for why this is true is rather long, and I hope you
don't mind if I refer you to a book. You can find this in any good
calculus book, for instance, by Apostol or by Courant and John.

You can think of this (infinite) sum as a series of correction

factors. The first term (which is x) says: sin(x) is about equal to x.
Well this is not very accurate, but if you want more accuracy, you can
go to the next term: sin(x) is more like x - x*3/3!. The further you

go, the more accurate you get.

It's possible to know the error from the actual value of sin(x) if you
stop at a certain point in the summation. Computers and calculators
need only add out to the point where the error is smaller than the
desired accuracy.

One last thing: Note that for most values of x (i.e. most angles), the
decimal value of sin(x) cannot be given in complete accuracy because,
for most values of x, sin(x) will have a non-repeating decimal
expansion.
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What is dx?

What does dx mean and where does it come from?
Thanks.

From: Doctor Jeremiah
Subject: Re: dx

Hi Michael,

[ assume by "dx" you mean the calculus version of dx.
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Calculus is all about how to measure the slope of any arbitrary line,
especially curved ones.

Consider y = 2x”2 (the x*2 means "x squared").

If you used the "normal" method to get the slope you would pick two
points (lets pick (1,2) and (3,18) for this example) and then you
would make a ratio of the "rise" (the difference in the y values) and
the "run" (the difference in the x values)

If you did this you would have a slope of:
m = (y2-y1)/(x2-x1) = (18-2)/(3-1) = 16/2 =8

The problem with this method is that it produces the wrong answer.
The only time it's right is for a straight line. For example, pick two
different points: (2,8) and (3,18)

Then you would have this slope:
m = (y2-yl)/(x2-x1) = (18-8)/(3-2) = 10/1 = 10

The curve gets flatter and flatter as the two points get closer and closer.
When they get infinitely close to each

other we get the most accurate answer because essentially the points

are so close to each other that there is no room for any curvy bits.

If we define "dx" to be the difference between two x-values that are
infinitely close to each other (an infinitely small difference in x
values), and we define "dy" to be the difference between two y-values
that are infinitely close to each other (an infinitely small

difference in y values), then we can pick two infinitely close points
and do this:

m = (y2-y1)/(x2-x1) = dy/dx

So dy/dx is the slope of a line. If we use the rules of calculus to
"differentiate" our equation (using the mythical d function):

y =2x"2



d(y) = d(2x"2)

dy =2 d(x"2)
dy = 2*2x*d(x)
dy = 2*2x*dx
dy = 4x*dx

We find that an infinitely small difference in y can be measured with
this equation: dy = 4x*dx. But if we rearrange it slightly:

dy = 4x*dx

dy/dx = 4x*dx/dx
dy/dx = 4x*1
dy/dx = 4x

We find that the slope of y = 2x"2 is 4x. Notice that the slope is
not a number; it actually changes depending on where in the graph we
are; you can see that the slope changes by graphing y = 2x"2.

So the slope at any point on the graph can be found with this equation
because the two points that we use to calculate with are infinitely
close together (for all intents and purposes they are the same point)

And since we know the definitions of dx and dy, we could say that the
slope at any point equals an infinitely small difference in y (dy)
divided by an infinitely small difference in x (dx). This is

absolutely true. And for a straight line graph it is the same as

taking the difference of any two points.

Proof of Derivative for Function f(x) = ax*n

From: Colin

Subject: proof of the "quick form" of derivitives of A*X"N

I've been wondering if there is a proof for the "quick form" of the
derivative in the ax”n case? We just learned it after using limits to
calculate the derivatives. I like the quick method, but I'm the kind
of person who likes to know why and how things work.

From: Doctor Peterson
Subject: Re: proof of the "quick form" of derivitives of A*X"N

Hi, Colin.
We first define derivatives using limits, then we apply that



definition to find simple rules for the derivatives of common
functions, and then rarely go back to the definition again. The main
value of the definition is to allow us to prove the rules and other
theorems about derivatives.

Let's look at the function f(x) = ax"n. The derivative is
f(x+h) - f(x) a(x+h)"n - ax*n
lim ----mmmmmme- = lim --------mmee -

h->0 h h->0 h

At this point you need the binomial expansion; among other places, you
can find this discussed in our FAQ on Pascal's triangle. Or see

Binomial Expansions and Pascal's Triangle
http://mathforum.org/library/drmath/view/56381.html

All that matters to us is the first two terms:
(atb)*n=a”n+na’(n-1) b + n(n-1)/2 a"(n-2) b2 + ...

where the rest of the terms have whole coefficients with decreasing
powers of a and increasing powers of b. Setting a = x and b = h, and

putting this into the derivative, we get

a[x"n + nx*(n-1)h + n(n-1)/2 x*(n-2) "2 + ...] - ax*n

Note that the first term of the expansion will cancel with the -ax”n
at the end, leaving

anx”(n-1)h + an(n-1)/2 x*(n-2) h"2 + ...
h->0 h
Up to this point we still have the form 0/0, which means there's more
to do. But now we can divide by h. The unshown terms above all have

a factor of at least h"*2, so we get

= lim [anx"(n-1) + h(an(n-1)/2 x*n-2 + ...) ]



= anx”(n-1)
since the term with a factor of h goes to zero.

The main idea of limits is that when we simplify a function, as by
dividing by h here, we get a continuous function that is equivalent to
the original everywhere except where the latter was not defined;
therefore the new function's VALUE at that point is the same as the
LIMIT of the original function. In effect, we are "filling in the
hole". Not all limits can be solved that easily, but when it can be
done, it makes the work very easy. And now that we've done it, we
don't need to bother with limits when we need to find the derivative
of a polynomial.

If you have any further questions, feel free to write back.
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A4 5 —3% : Euler method B AE

In mathematics and computational science, the Euler method, named after
Leonhard Euler, is a first-order numerical procedure for solving ordinary
differential equations (ODEs) with a given initial value. It is the most basic
kind of explicit method for numerical integration for ordinary differential
equations.

A A
A5 3 Ay
A;
Ao
—
Derivation

We want to approximate the solution of the initial value problem

dy(t)ydt = f{ty(t))

by using the first two terms of the Taylor expansion of y, which represents
the linear approximation around the point (t0,y(t0)) . One step of the Euler
method from tn to tn+1 =tn + h is

yn+1l =yn+h - f(t,yn)

The Euler method is explicit, i.e. the solution yn + 1 is an explicit function
of yifori

While the Euler method integrates a first order ODE, any ODE of order N
can be represented as a first-order ODE in more than one variable by
introducing N — 1 further variables, y', y", ..., y(N), and formulating N first
order equations in these new variables. The Euler method can be applied to
the vector (y(t),y'(t),y"(t), ..., y(N)(t) ) to integrate the higher-order
system.

#xED : Oscillation

Oscillation is the repetitive variation, typically in time, of some measure
about a central value (often a point of equilibrium) or between two or more
different states. Familiar examples include a swinging pendulum and AC
power.

H R8N+ : Simple harmonic oscillator
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The simplest mechanical oscillating system is a mass attached to a linear
spring subject to no other forces. Such a system may be approximated on
an air table or ice surface. The system is in an equilibrium state when the
spring is static. If the system is displaced from the equilibrium, there is a
net restoring force on the mass, tending to bring it back to equilibrium.

The specific dynamics of this spring-mass system are described
mathematically by the simple harmonic oscillator and the regular periodic
motion 1s known as simple harmonic motion. In the spring-mass system,
oscillations occur because, at the static equilibrium displacement, the mass
has kinetic energy which is converted into potential energy stored in the
spring at the extremes of its path.

An undamped spring—mass system is an oscillatory system.

A NANY:

In physics, simple harmonic motion (SHM) is the motion of a simple
harmonic oscillator, a periodic motion that is neither driven nor damped.

A body in simple harmonic motion experiences a single force which is
given by Hooke's law; that is, the force is directly proportional to the
displacement x and points in the opposite direction.

Mathematically, Hooke's law states that

F=—K - x

where
x is the displacement of the end of the spring from its equilibrium position;
F is the restoring force exerted by the material; and k is the force constant

(or spring constant).
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oscillates about an equilibrium position in a sinusoidal pattern.
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JE &) . Dynamics of simple harmonic motion

For oscillation in a single dimension, combining Newton's second law (F =
m d2x/dt2) and Hooke's law (F = —kx, as above) gives the second-order
linear differential equation

F = m d2x/dt2 = —kx

where m is the mass of the body, x is its displacement from the mean
position, and k is a constant. The solutions to this differential equation are
sinusoidal; one solution is

x(t) = Acos(wt + ),

where A, o, and ¢ are constants, and the equilibrium position is chosen to
be the origin.[1] Each of these constants represents an important physical
property of the motion: A is the amplitude, ® = 2nf is the angular
frequency, and o is the phase.

INEE & FRIEA

Using the techniques of differential calculus, the velocity and acceleration
as a function of time can be found:

()= 2 = _Awsin(wt + ¢
) — —Aws 'F o).
v ) dt — n + ).
o d%x 5 ,
a(t) = ol —Aw” cos(wt + ).

Position, velocity and acceleration of a SHM as phasorsAcceleration can
also be expressed as a function of displacement.
Acceleration can also be expressed as a function of displacement:
a*x = - 02-°x
Now since ma = —mo”2x = —kx,
o2 = k/m.
Then since ® = 2t
1 [k
J=
Q*r\ m’

and since T = 1/f where T is the time period,
'771

—2"7-\‘ ‘l\

These equations demonstrate that period and frequency are independent of
the amplitude and the initial phase of the motion.
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Simple harmonic motion shown both in real space and phase space. The
orbit is periodic.

Real Space Phase Space

Orbit

Velocity

BiJRE) : free oscillation D #{L

2RDFEHZEIE> THBo

yOZ 2BHa U TR EEE—y (t) [CRDEEZEKRDI,
d 2ytyd t= -y (t) ZEDHAEATEKRT,

dy/dt=z (t) &&< & dz/dt=d 2y(t)/d t2=—y (t)
EIRBDT

dy/dt = z
dz/dt =—vy

Embd B E syiat= (yt+1 - yt) /4t &b

yt+1 — y 1 =yt+ 2z 1 - 4t
zttl — zt =Z7Zt—yt- -4t
THITRIT &

yt+1 = 1 At yt

zt+1 —AaAt 1 zt

FEE y0=0 :fIBHNE 20=1 : HREH]



| A iE at= 0.1
STERE
t y:AIE z EBE

00.00 1.00

0.10.10 1.00
0.20.20 0.99
0.30.300.97
0.4 0.40 0.94
0.5 0.49 0.90
0.6 0.58 0.85
0.70.67 0.79
0.80.74 0.73
0.9 0.82 0.65
1 0.88 0.57

1.40

0.70 X \

0.35 \

o 1N\ AN /
N\ A4

-0.70 \ X
-1.05

-1.40 +rrrr-rrrr-rrrrrererereeeeeee e
0 0306 09 12 1518 2.1 24 27 3 33 3.6 39 42 45 438

HZX y (t) =sin (1)

y'= —y I3iRE (ZARE OMAPAERAKRE CTH ! TOE
iF. EOXTERIND . BERXZFE>T. RO Z#HIT S,
ayist= (yt+1 - y t) J4t ODOEDIAAT—ZEDEFEEN
Bo

AT —EnZFES . BAFEZT > &Icih b,




BAELAREDEMS Y7y (radian, E85irad) &, ERREAMAR
ShickiF2HE (FHA) ODEMTH D, 7V Vid. HELT
ZOMEO¥FEERURSDOMEZVIDENZ2RDEENH T ADE L
EHRIND, 17IFVIEEHETHS E#57.29578F ICHEHT
%, LT, 180EIFMIEXRICEVWTIXInT V7V, 360EE2n~
STV ERD,

LA YV ET I 2DDI VI DA - HHEZET IV,

Differential Equations and Flow Rate

Date: 02/14/99 at 01:05:12

From: Stephen Johnson

Subject: Differential Equations

Each of two tanks contains 100 gal of pure water. A solution containing
3 Ib/gal of dye flows into Tank 1 at 5 gal/min. The well-stirred

solution flows out of Tank 1 into Tank 2 at the same rate. Assuming the
solution in Tank 2 is well-stirred and that this solution flows out of
Tank 2 at 5 gal/min, determine the amount of dye in Tank 2 after 15
minutes.

Date: 02/14/99 at 09:47:02
From: Doctor Anthony
Subject: Re: Differential Equations

Let M1 = mass of dye in tank 1 at time t
M2 = mass of dye in tank 2 at time t

The inflow to tank 1 is 3 * 5 Ibs/min = 15 lbs/min into the 100 gallon
tank. The outflow 1s 5 * M1/100 Ibs/min = .05 M1 lbs/min from the 100

gallon tank.

The differential equations are then:
dM1/dt=15 - 0.05M1 = .05(300-M1)
dM1/(300-M1) = .05 dt and integrating
-In(300-M1) = .05t + C

In(300-M1) =-.05t+ C

300-M1 = e”(-.05t+C) = A e”(-.05t)
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and so M1 =300 - A e”(-.05t) when t =0, M1 = 0. Thus A =300 and
M1 =300[1-e"(-.05t)]

For tank 2 the differential equation is:

dM2/dt = .05M1 - .05M2

dM2/dt + .05M2 = .05M1 = 15[1-e"(-.05t)]

This is a linear equation and we multiply by the integrating factor
e MNT(.05dt) = e(.05¢t):

e™(.05t) dM2/dt + .05e”(.05t) M2 = 15e*(.05t)[1-e”(-.05t)]
d[e”(.05t) M2]/dt = 15[e”(.05t) - 1] and integrating

e™(.05t) M2 = 15[(1/.05)e™(.05t) - t] + C

M2 = 15[(1/.05) - t e”(-.05t)] + C e”(-.05¢)

att=0,M2 =0, and so 0 =15[1/.05] + C. So C =-300. Then
M2 =300 - 15te”(-.05t) - 300 e”(-.05t)

M2 =300[1-e"(-.05t)] - 15t. e™(-.05¢)

When t -> infinity, M2 -> 300 which is correct.

When t = 15 this gives:

M2 =300[1-e"(-.75)] - 15 x 15 x e™(-.75)
=158.29 - 106.2825
=52.0075 lbs
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Every point mass attracts every single other point mass by a force pointing
along the line intersecting both points. The force is directly proportional to
the product of the two masses and inversely proportional to the square of
the distance between the point masses:

Fij=G - Mi - Mj / Dijj

where: Fij is the magnitude of the gravitational force between the two point
masses, G 1s the gravitational constant, Mi is the mass of the first point
mass, Mj is the mass of the second point mass, and Dij is the distance
between the two point masses.

The gravitational attraction force between two point masses is directly
proportional to the product of their masses and inversely proportional to the
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square of their separation distance. The force is always attractive and acts
along the line joining them.

Newton's law of universal gravitation states that every object in this
universe attracts every other object with a force which is directly
proportional to the product of their masses and inversely proportional to the
square of distance between their centres. This is a general physical law
derived from empirical observations by what Newton called induction
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In physics, an inverse-square law is any physical law stating that

some physical quantity or strength is inversely proportional to the
square of the distance from the source of that physical quantity.

The inverse-square law generally applies when some force, energy,
or other conserved quantity is radiated outward radially from a
source.

Since the surface area of a sphere (which is 4mr 2) is proportional to
the square of the radius, as the emitted radiation gets farther from
the source, it must spread out over an area that is proportional to
the square of the distance from the source. Hence, the radiation
passing through any unit area is inversely proportional to the square
of the distance from the source.
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Date: 6/13/96 at 9:50:25
From: dhautree
Subject: Escape velocity
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How did Einstein work out how fast you need to go to get off the
earth?

Date: 6/13/96 at 21:1:12
From: Doctor Luis
Subject: Re: Escape velocity

This is not really a problem Einstein worked, rather it is a well
known result in Physics. It can be derived as follows:

The "escape velocity" of an object can be found by finding the
work done by a gravitational field on a particle:

As you may know, the gravitational force field can be alternatively
represented by the negative gradient of a special function, called
the potential function

F = GMm/r*2 (m:particle's mass; M: planet's mass; r:dist from
~ center)

= - grad p (p:potential function)

Now, the work it takes for a particle with mass m to go from a pt A
to a pt B is the line integral of the dot product of the force with
the differential displacement around the path AB

b
W =S F * dr ( the "*" means dot product)
a ~ o~

Since only the radial component of the displacement contributes to
the work,

b
W =S Fr * dr, where Fr is the radial component of the force
a ~ ~

Now,
Fr=-mg (R/r)*2

~



where 1 is the distance of the particle from the planet, R is the
planet's radius, and mg is the weigth of the particle at the surface
of the planet (g is the acceleration of gravity at the planet's
surface)

So,

b

W=-mgR"2 S (1/1"2) dr
a

= -mgR"2(-1/b + 1/a)

Now, setting b at infinity (this can be interpreted as: what is the
energy required to move a particle from pt A out of the planet, i.e.,
to a point where the gravitational attraction is negligible) and
setting a (the initial position) as R ( the radius of the planet):

W =-mgR"2( 0+ 1/R)

=-mgR

Now, the work done is equal to the change in kinetic energy (mv”2)/2
So that

(m(vf)*2)/2 - (m(v1)*2)/2 = -mgR
now, vf = 0 (initial vel.)

so that,

- m(vi)*2 = -2mgR
(vi)*2 =2gR

or vi = sqrt(2gR)

And this is the (treshold, should I say?) velocity required for a
particle to overcome the planet's gravitational field.
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In numerical analysis, Newton's method (also known as the
Newton—Raphson method), named after Isaac Newton and Joseph
Raphson, is perhaps the best known method for finding
successively better approximations to the zeroes (or roots) of a real-
valued function. Newton's method can often converge remarkably
quickly, especially if the iteration begins "sufficiently near" the
desired root. Just how near "sufficiently near" needs to be, and just
how quickly "remarkably quickly" can be, depends on the problem.
This is discussed in detail below. Unfortunately, when iteration
begins far from the desired root, Newton's method can easily lead
an unwary user astray with little warning. Thus, good
implementations of the method embed it in a routine that also
detects and perhaps overcomes possible convergence failures.

T DZE 273

Given a function f(x) and its derivative f '(x), we begin with a first
guess x0 . A better approximation x1 is

. f(llfo)
SO T LT N
f’(llfo)
An important and somewhat surprising application is Newton—

Raphson division, which can be used to quickly find the reciprocal of
a number using only multiplication and subtraction.

r =
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. L
/>< / Xn+1 Xn

An illustration of one iteration of Newton's &

method (the function f is shown in blue and
the tangent line is in red). We see that x,, 4 is
a better approximation than x,, for the root x

of the function f.
—a1—bh2EDOER

The idea of the method is as follows: one starts with an initial guess
which is reasonably close to the true root, then the function is
approximated by its tangent line (which can be computed using the
tools of calculus), and one computes the x-intercept of this tangent
line (which is easily done with elementary algebra). This x-intercept
will typically be a better approximation to the function's root than the
original guess, and the method can be iterated.

Suppose f : [a, b] = R is a differentiable function defined on the

interval [a, b] with values in the real numbers R. The formula for
converging on the root can be easily derived. Suppose we have
some current approximation xn. Then we can derive the formula for
a better approximation, xn+1 by referring to the diagram on the right.
We know from the definition of the derivative at a given point that it
is the slope of a tangent at that point.

fl(;];_n) — rise . Ay _ f(In) _ 0

run = AX  Tp — Tpit
Here, f ' denotes the derivative of the function f. Then by simple
algebra we can derive
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f(zy,)

Tn41 = Tp — f’(il’ )
n,

We start the process off with some arbitrary initial value x0. (The
closer to the zero, the better. But, in the absence of any intuition
about where the zero might lie, a "guess and check" method might
narrow the possibilities to a reasonably small interval by appealing
to the intermediate value theorem.)

RANE - &/IMEZ RO 5757E

Newton's method can also be used to find a minimum or maximum
of a function. The derivative is zero at a minimum or maximum, so
minima and maxima can be found by applying Newton's method to
the derivative. The iteration becomes:

- o f'(@n)
Tkt = T Y
Ln,

SHLOZER

Newton's method is an extremely powerful technique -- in general
the convergence is quadratic: the error is essentially squared at
each step (that is, the number of accurate digits doubles in each
step). However, there are some difficulties with the method.

* 1. Newton's method requires that the derivative be calculated
directly. In most practical problems, the function in question may be
given by a long and complicated formula, and hence an analytical
expression for the derivative may not be easily obtainable. In these
situations, it may be appropriate to approximate the derivative by using
the slope of a line through two points on the function. In this case, the
Secant method results. This has slightly slower convergence than
Newton's method but does not require the existence of derivatives.

* 2 Ifthe initial value is too far from the true zero, Newton's method
may fail to converge. For this reason, Newton's method is often
referred to as a local technique. Most practical implementations of
Newton's method put an upper limit on the number of iterations and
perhaps on the size of the iterates. If the derivative of the function is
not continuous the method may fail to converge.

®* 3. [Ttis clear from the formula for Newton's method that it will fail in
cases where the derivative is zero. Similarly, when the derivative is



close to zero, the tangent line is nearly horizontal and hence may
"shoot" wildly past the desired root.

* 4. [Ifthe root being sought has multiplicity greater than one, the
convergence rate is merely linear (errors reduced by a constant factor
at each step) unless special steps are taken. When there are two or
more roots that are close together then it may take many iterations
before the iterates get close enough to one of them for the quadratic
convergence to be apparent.

(2]

Consider the problem of finding the square root of a number. There are
many methods of computing square roots, and Newton's method is one.

For example, if one wishes to find the square root of 612, this is equivalent
to finding the solution to

XM2=612

The function to use in Newton's method is then,

f(x)=X"2-6 1 2

with derivative,

f'(x)=2x
With an initial guess of 10, the sequence given by Newton's method is
f(zo) 102 — 612
Ty = Tg-— = 1W0-——— = 356
T T i) 210
f(zy) 35.62 — 612
Ty = Ty — = 356 — = 26.3955056
2T T ) 2.356 =
T3 = : = : = 24.7906355
Ty = : = : = 24.7386883
Ts : : = 24.7386338

3RFERX Px)=8x"3+4x2—4x—1=0%&<
ME—DEHFEDEERIE. x=cos (2n/7) TI, P"(x) =48x + 8
BRDTHIRC EHx> 0TIy =P®x) [F TICHTY.

—f% (T (an, P(an)) I & [T D EERRIE

y =4(6an”2 + 2an — 1)x — 16an"3 — 4an™2 — 1
x Bl & DR R Dx FEfZan+1 [Fant+1 =16an™3 + 4an™2 + 1 {an} (& Z DEL

kXEAL, WBEZal=1TEE5EZTRDRUVETETEEZ T, —
BIENENWERRTKEDIDITTEHDFEAD, EEZF > T
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Va2 UTES

EZTFELTOBERZH zIcHULT, gificamBALIcZ2a— Vi

ZE> THRER f(z)=0 DAELUEZRD BIFEIC. I {zn} MUK
LBWESHBm JIHEZ0) NMFELET, TDLS%BHR z0 D
EE8%zY1 U T7EBIEVNET,

720757 THEREDKHIIECHUTHEZE, DEDZ
DODRFED—HAHNEEERBLUTH DI ETI, JaUFPERLE
E1918FICTITVANDHEEY 2T ICL>THERSN
FeHDTY, URFEAVE 1 —IDNKREETH >IclehiFEh
CHEBICDIESBMN>ZESTI, I T¥a Y T7EADEHEs
MTEET

7 7 > A DEEFE Gaston Maurice JuliahY, 1918 ICFHX
MMemoire sur l'iteration des fonctions rationnellesy THZF U o

Y > 7 )L 7 A—% & DBenoit Mandelbroti& 1924F 4 £ N TI H
5. XTI TO-—DNEENBRIHS Y1) PERIEFAISNT
WEUTco Y2 UTPEREIYYTILTO-EEDEWE. Z=Z
4COMBRUETEICEWT, YU TIL7O—&ENZOHEREZ0
ZBICZ0=0+0i& LT, CFHELICKFEZHEIT 5DICXHL. ¥
2 U7EETR. CEERICSZ. Z0FHLICKEZHET %
Z & TY, X Julia setss
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COIEEEP QP L =-0.76246. COEENSFOF.L-=00904185
ZOMSEENEF Op L =-0057. ZODEENEF D P.L.=0.34
AT yF/EHE)L=8E-05, BAHRE LI =1024, R DR =256

REMIR : T+ U—

AT FY—HIR AT FV e BEROIEZSIN. bbb
iF. BEEREOE O 2R (InNZzBEHIEE VWD) ZEAKLTW
%o In physics and geometry, the catenary is the theoretical shape a

hanging chain or cable will assume when supported at its ends and acted on
only by its own weight. Its surface of revolution, the catenoid, is a minimal
surface and will be the shape of a soap film bounded by two circles. The
curve is the graph of the hyperbolic cosine function, which has a U-like
shape, similar in appearance to a parabola.

77—7F : The inverted catenary arch

The catenary is the ideal curve for an arch which supports only its own
weight. When the centerline of an arch is made to follow the curve of an
up-side-down (ie. inverted) catenary, the arch endures almost pure
compression, in which no significant bending moment occurs inside the
material. If the arch is made of individual elements (eg., stones) whose
contacting surfaces are perpendicular to the curve of the arch, no
significant shear forces are present at these contacting surfaces. (Shear
stress 1s still present inside each stone, as it resists the compressive force
along the shear sliding plane.) The thrust (including the weight) of the arch
at its two ends is tangent to its centerline. The Gateway Arch in Saint
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Louis, Missouri, United States follows the form of an inverted catenary. It
1s 630 feet wide at the base and 630 feet tall.
St. Louis Arch

Ny

.......

The formula for the St. Louis Arch,

y=-127.7ft cosh(x/127.71t);757.7
is displayed inside.

BREHOEY : http://www.epii.jp/articles/note/math/catenar
HSED—EZILKT D& ARRD:

/"‘(s + As)

BRIR DI \ER S \s = s 4+ As

yj J pPgAs

S =8

Z DHUNERDITE L DlE. HICHRULIZERD, BN pgls& | i
ICEIK RDIRA Tls), T(s +As)DHTY, ZNISEELTAHDHD
BVWDOXZEZTTI &,

To(s+As)—T,(s)=0

(1)
Ti(s + As) — Ty(s) — pgls = 0(2)

ERDET, 2l T 3RO TOBEARBS. THEHEA RS
Z=H5H U,

TI(S) _ <
T ()~ t.an(e(s))(3)
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M DIIEET,

3 (1) AN SEADEABED Tol)E s ITERSBVWERTH S
ZENDIDFETHS, FOEHE., T:=T.)6ULET,

35& Q) XOBEFEM S,

Ty(s) = T tan(6(s))

(4)
EDNBDT, Iz QRNICRATEHIET,

Ttan(f(s + As)) — Ttan(8(s)) = pgA>(5)
Z18Fd, ZOMA%Z AsTEI>THS As—» 0DIBREREEZX D &
T

Ti tan(8(s)) = pg

ds N=PT 0L (6)
ERZX XN

;itan[f?["])i) = p_z.?(7)

178X T,

ST O ABEX TN, BEICEIT T,

tan(#(s)) = —>+C(8)

TJ, ZITCRERDEHTI, WER. s ODOER[RZBEHIRD

BTlcEdzElcTniE. ZOATIEBESHICHIRIIEREICHT
WD, DFD 06)eo=0220DT, CTOEETICIFTDEDESIZ
C=0&ERDFEY,

E->T. ZORAFHDH & Tl

f(s) = arctan (pq})
T X9) \
ERRD DRDBREBHETEZAZERODIENTERLL

ZEZEUVTIRLEOTELHEEIIZBVWDOTTI. 8 &% sDERETH 5D
9. EVWSEENBVWRRTIEEARBRFEDOHBLZONREYE DI
WADIFEAETZERWET,

DT, SERERICEOLLLREN ., EXEERTORKRICEL
THIEWERBWET,

A e UTE., EREANSHER s=s0 KEITEENICHETD EE
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(z(s0).y(s0))% s0o THESDLLT, TDET sa EHEET DI Ll kD
y=fR)EVWSED, KDRBRIFICETZEICULET,
FITHSHIC,

(10)
M DIIEET,
e, A=FELT
tan(f(s)) = As
(11)
NEDIIDEVWSDNEDFERTUc, ZOWMBZ s THRIT S
& T,

1 do
cos2(0(s)) ds

(12)
> T (10) RDIEDIE.

A

%%%ﬁ?:?ﬁ&?% B52ENDMDERT,

> TEY «DHDEDF. o = arctan(Aso)& LT,
(14)

=TI T

arcsinhz = = + /1 + 22

(15)
THD I EME arcsinh NFHERITH S EITERI NIE.
arcsinh(Asg)

A

x(sp) =
(16)
LAETEET,

—7. YDFTDEDIFH > EFET

(17)

EETRETEFRD,

ST hElF (16 e (17) XZEFEILSETHELLEIT T, i
ETCHBET, £9 (16) AH 5.

Asg = sinh(Ax)
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BDT, Iz vDHKICKALT,

(19)
ETRD ET

NiF (BEEDODXLGEEHDTL &5D) —YICBEEHKROA
BREMENTWEIARRTT

BN
BWECERISZ LD, HtElcthE dZ &5,
EXZSEdTEEBEANIE.

d=C (cosh—2= 1)

oG
CClc d: SR y=d
S : 13ME] XZ%
C: 7B c=L
Y
ESt ki) ES SRS I=]
i d i
Lamis ° %

NDTFFIUEIZ. RESDTAA>IayvEEHE > TWATERT. BHIRD
Ex—FWNICROZETH S
B & DEL
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y=zx

WMEZ &S,
g e | mmm : Catenary
Yy D)
. EROF(LRTHE
O ! 3

yO)Z 2BEMSPUTRZ ETOBEHyY (1) [CLZE#MzEKRDT
(AYS
d 2y@ydtm=y (t) ZEZIARLTERI,

dy/dt=z (t) &&< & dz/dt=d ™ 2y(t)/d t 2=y
(t) &RBZDT

dy/dt = z
d z /dt = y



=t ddE ay/iat= (yt+1 - y t) /4t

)

yt+41 — vy t = yt + z t - 4t

zt+1 — z t = Zt + yt -4t

T3 TxRIT &

yt+1 = 1 4t yt

zt+1 At 1 zt

#ER{E yO=

z0= 0
% A A= 0.1
Eb=X D& (t) z (t) tr2

0 1.00 0.00 0
0.1 1.00 0.10 0.024
0.2 1.01 0.20 0.096
0.3 1.03 0.30 0.216
0.4 1.06 0.40 0.384
0.5 1.10 0.51 0.6
0.6 1.15 0.62 0.864
0.7 1.21 0.74 1.176
0.8 1.29 0.86 1.536 &HZ
0.9 1.37 0.99 1.944
1 1.47 112 2.4

1.1 1.58 1.27 2.904
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KNt zE-> T, HROEZHIT S, gy/at= (yt+1
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